Hardware-Software Codesign

Rapid Prototyping Design
Process

REUSE DESIGN LIBRARIES AND DATABASE

_______ |
| SYSTEM |—,.| FUNCTIO HW & | INTEG. |
| _DEE.__ sw | _&TEST _|

I
I
HW & SW — ESEWH:II_)I SW 1
CODESIGN L CODE.

/

N, y;

HW & SW
Partitioning
& Codesign

Introduction to Embedded Systems
and Hardware-Software Codesign

\ . Introductiol1

Unified HW/SW Representations

HW/SW Partitioning Techniques
Integrated HW/SW Modeling Methodologies
HW and SW Synthesis Methodologies

Industry Approaches to HW/SW Codesign
Hardware/Software Codesign Research

Summary

Codesign Definition
and Key Concepts

e Codesign

— The meeting of system-level objectives by
exploiting the trade-offs between hardware and

software in a system through their concurrent
design

* Key concepts

— Concurrent: hardware and software developed at
the same time on parallel paths

— Integrated: interaction between hardware and
software developments to produce designs that
meet performance criteria and functional
specifications

Motivations for Codesign

* Factors driving codesign (hardware/software
systems):
— Instruction Set Processors (ISPs) available as cores

in many design kits (386s, DSPs,
microcontrollers,etc.)

— Systems on Silicon - many transistors available in
typical processes (> 10 million transistors available

in IBM ASIC process, etc.)

— Increasing capacity of field programmable devices
- some devices even able to be reprogrammed on-
the-fly (FPGAs, CPLDs, etc.)

— Efficient C compilers for embedded processors
— Hardware synthesis capabilities

Motivations for Codesign
(cont.)

 The importance of codesign in designing
hardware/software systems:

— Improves design quality, design cycle time, and cost
* Reduces integration and test time

— Supports growing complexity of embedded systems

— Takes advantage of advances in tools and
technologies
* Processor cores
* High-level hardware synthesis capabilities
e ASIC development

Categorizing
Hardware/Software Systems

* Application Domain

— Embedded systems
* Manufacturing control
* Consumer electronics
Vehicles
Telecommunications
Defense Systems

— Instruction Set Architectures
— Reconfigurable Systems
* Degree of programmability
— Access to programming
— Levels of programming
* Implementation Features
— Discrete vs. integrated components
— Fabrication technologies

Categories of Codesign Problems

Codesign of embedded systems

— Usually consist of sensors, controller, and actuators
— Are reactive systems

— Usually have real-time constraints

— Usually have dependability constraints

Codesign of ISAs

— Application-specific instruction set processors (ASIPs)
— Compiler and hardware optimization and trade-offs

Codesign of Reconfigurable Systems

— Systems that can be personalized after manufacture for a
specific application

— Reconfiguration can be accomplished before execution or
concurrent with execution (called evolvable systems)

Components of the Codesign Problem

Specification of the system
Hardware/Software Partitioning

— Architectural assumptions - type of processor, interface style between
hardware and software, etc.

— Partitioning objectives - maximize speedup, latency requirements,
minimize size, cost, etc.

— Partitioning strategies - high level partitioning by hand, automated
partitioning using various techniques, etc.

Scheduling
— Operation scheduling in hardware
— Instruction scheduling in compilers
— Process scheduling in operating systems

Modeling the hardware/software system during the design process

Embedded Systems

Embedded Systems

Application-specific systems which contain hardware and software
tailored for a particular task and are generally part of a larger system
(e.g., industrial controllers)

e Characteristics

Are dedicated to a particular application
Include processors dedicated to specific functions
Represent a subset of reactive (responsive to external inputs) systems
Contain real-time constraints
Include requirements that span:
e Performance
* Reliability
* Form factor

Embedded Systems:
Specific Trends

Use of microprocessors only one or two
generations behind state-of-the-art for
desktops

— E.g. N/2 bit width where N is the bit width of
current desktop systems

Contain limited amount of memory

Must satisfy strict real-time and/or
performance constraints

Must optimize additional design objectives:

— Cost

— Reliability

— Design time

Increased use of hardware/software codesign
principles to meet constraints

Embedded Systems:
Examples

Banking and transaction processing
applications

Automobile engine control units
Signal processing applications

Home appliances (microwave ovens)
Industrial controllers in factories

Cellular communications

Embedded Systems:
Complexity Issues

Complexity of embedded systems is continually increasing

Number of states in these systems (especially in the software) is very
large

Description of a system can be complex, making system analysis
extremely hard

Complexity management techniques are necessary to model and
analyze these systems

Systems becoming too complex to achieve accurate “first pass”
design using conventional techniques

New issues rapidly emerging from new implementation technologies

Techniques to Support
Complexity Management

Delayed HW/SW partitioning

— Postpone as many decisions as possible that place
constraints on the design

Abstractions and decomposition techniques

Incremental development
— “Growing” software

— Requiring top-down design
Description languages
Simulation

Standards

Design methodology management framework

A IVlodel ot the Current
Hardware/Software Design

Process
DOD-STD-2167A

HWCI
HW Development Testing
Fabric.
Detailed
Prelim. Design

Hardware Design

Require.
SyS/I_.IW Analvsis
Require. g

System Analysis System Operation.
Concepts Integ. and Testing and
SYS/SW test Evaal
Require.
Analvsic Software
' Require. _
Analysis Prel!m.
Design Detailed
Design Coding,
Unit test.,
SW Development Integ. test CSCl
Testing

[Franke91]

© IEEE 1991

Current Hardware/Software
Design Process

Basic features of current process:
— System immediately partitioned into hardware and software components

— Hardware and software developed separately
— “Hardware first” approach often adopted
Implications of these features:

— HW/SW trade-offs restricted
* Impact of HW and SW on each other cannot be assessed easily

— Late system integration
Consequences these features:
— Poor quality designs

— Costly modifications

— Schedule slippages

Incorrect Assumptions IN
Current Hardware/Software
Design Process
Hardware and software can be acquired

separately and independently, with

successful and easy integration of the two
later

Hardware problems can be fixed with
simple software modifications

Once operational, software rarely needs
modification or maintenance

Valid and complete software requirements
are easy to state and implement in code

Directions of the HW/SW
Design Process

Integrated Modeling Substrate

HWCI
Testing

HW Development

Fabric.

Detailed
Design

Prelim.

Hardware Design
Require.
SyS/I_.IW Analvsis
Require. |
System Analysis System Operation.
Concepts Integ. and || Testing and
Sys/SW tact Evaluation
Require.
Analvsis Software
' Require. _
Analysis Prel!m.
Design Detailed
Design Coding,
Unit test.,
SW Development Integ. test CSCl
Testing
[Franke91]

© IEEE 1991

Requirements for the Ideal
Codesign Environment

* Unified, unbiased hardware/software
representation

— Supports uniform design and analysis techniques for
hardware and software

— Permits system evaluation in an integrated design
environment

— Allows easy migration of system tasks to either
hardware or software

* |terative partitioning techniques

— Allow several different designs (HW/SW partitions) to
be evaluated

— Aid in determining best implementation for a system

— Partitioning applied to modules to best meet design
criteria (functionality and performance goals)

Requirements for the Ideal
Codesign Environment (cont.)

* Integrated modeling substrate

— Supports evaluation at several stages of the design
process

— Supports step-wise development and integration of
hardware and software

* Validation Methodology

— Insures that system implemented meets initial
system requirements

Cross-tertilization between
Hardware and Software
Design

e Fast growth in both VLSI desigh and
software engineering has raised awareness
of similarities between the two
— Hardware synthesis
— Programmable logic
— Description languages

* Explicit attempts have been made to
“transfer technology” between the
domains

Cross-tertilization between
Hardware and Software
Design (cont.)

VLSI SOFTWARE
DESIGN ENGINEERING

* EDA tool technology has been transferred to SW CAD
systems

— Designer support (not automation)
— Graphics-driven design
— Central database for design information

— Tools to check design behavior early in process

Cross-tertilization between
Hardware and Software
Design (cont.)

SOFTWARE VLSI
ENGINEERING DESIGN

e Software technology has been transferred to
EDA tools

— Single-language design

* Use of 1 common language for architecture spec. and
implementation of a chip

— Compiler-like transformations and techniques
* Dead code elimination
* Loop unrolling

— Design change management

* Information hiding
* Design families

Typical Codesign Process

System
FSM- Description Concurrent processes
directed graphs (Functional) Programming languages
HW/SW Unified representation
Partitioning (Data/control flow)
SW/ \HW
Another y
HW/SW Software Interface Hardware
- Synthesis Synthesis Synthesis
partition \ /
System Instruction set level

Integration HW/SW evaluation

Conventional Codesign
Methodology

Analysis of Constraints
and Requirements

|
System Specs..

HW/SW
Partitioning

Software Descript.

\

Software Gen.

\ & Parameterization
Configuration Hardware HW/SW
odules Components \ Interfaces
HW/SW Integration
and Cosimulation

Integrated
System

System Evaluation — —~ Design Verification

Hardware Descript.

HW Synth. and

i) Interface Synthesis
Configuration

Software
Modules

© IEEE 1994
[Rozenblit94]

Codesign Features

Basic features of a codesign process

e Enables mutual influence of both HW and SW
early in the design cycle

— Provides continual verification throughout the
design cycle

— Separate HW/SW development paths can lead to
costly modifications and schedule slippages

* Enables evaluation of larger design space

through tool interoperability and automation
of codesign at abstract design levels

* Advances in key enabling technologies (e.g.,
logic synthesis and formal methods) make it
easier to explore design tradeoffs

